Alteration of copper physiology in mice overexpressing the human Menkes protein ATP7A.

نویسندگان

  • Bi-Xia Ke
  • Roxana M Llanos
  • Magali Wright
  • Yolanda Deal
  • Julian F B Mercer
چکیده

The Menkes protein (ATP7A) is defective in the Cu deficiency disorder Menkes disease and is an important contributor to the maintenance of physiological Cu homeostasis. To investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene ATP7A from chicken beta-actin composite promoter (CAG) were produced. The transgenic mice expressed ATP7A in lung, heart, liver, kidney, small intestine, and brain but displayed no overt phenotype resulting from expression of the human protein. Immunohistochemical analysis revealed that ATP7A was found primarily in the cardiac muscle, smooth muscle of the lung, distal tubules of the kidney, intestinal enterocytes, and patches of hepatocytes, as well as in the hippocampus, cerebellum, and choroid plexus of the brain. In 60-day- and 300-day-old mice, Cu concentrations were reduced in most tissues, consistent with ATP7A playing a role in Cu efflux. The reduction in Cu was most pronounced in the hearts of older T22#2 females (24%), T22#2 males (18%), and T25#5 females (23%), as well as in the brains of 60-day-old T22#2 females and males (23% and 30%, respectively).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alteration of Copper Physiology in Mice Over - expressing the Human 2 Menkes Protein ATP 7 A

21 The Menkes protein (ATP7A) is defective in the Cu deficiency disorder, Menkes 22 disease and is an important contributor to maintenance of physiological copper homeostasis. To 23 investigate more fully the role of ATP7A, transgenic mice expressing the human Menkes gene 24 ATP7A from chicken β-actin composite promoter (CAG) were produced. The transgenic mice 25 expressed ATP7A in lung, heart,...

متن کامل

Autonomous requirements of the Menkes disease protein in the nervous system.

Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental reta...

متن کامل

Maternofetal and neonatal copper requirements revealed by enterocyte-specific deletion of the Menkes disease protein.

The essential requirement for copper in early development is dramatically illustrated by Menkes disease, a fatal neurodegenerative disorder of early childhood caused by loss-of-function mutations in the gene encoding the copper transporting ATPase ATP7A. In this study, we generated mice with enterocyte-specific knockout of the murine ATP7A gene (Atp7a) to test its importance in dietary copper a...

متن کامل

New insights into CNS requirements for the copper-ATPase, ATP7A. Focus on "Autonomous requirements of the Menkes disease protein in the nervous system".

COPPER IS INDISPENSABLE for development and function of the central nervous system (CNS). This is dramatically illustrated by the severe neuropathological deficits in Menkes disease, an X-linked copper deficiency disorder resulting from mutation of the gene that encodes an essential copper transporting P1B-type ATPase, ATP7A. Since its discovery over two decades ago, the role of ATP7A in copper...

متن کامل

Mottled Mice and Non-Mammalian Models of Menkes Disease

Menkes disease is a multi-systemic copper metabolism disorder caused by mutations in the X-linked ATP7A gene and characterized by progressive neurodegeneration and severe connective tissue defects. The ATP7A protein is a copper (Cu)-transporting ATPase expressed in all tissues and plays a critical role in the maintenance of copper homeostasis in cells of the whole body. ATP7A participates in co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 290 5  شماره 

صفحات  -

تاریخ انتشار 2006